Practice: Integration by Substitution
Evaluate the following integrals.
$\int 2x \sin (x^2) dx$
$\int \frac{x}{(x^2+1)} dx$
$\int \frac{1}{x\ln(x)} dx$
$\int \cot(\theta) d\theta$ (Hint: $\cot \theta = \frac{\cos \theta}{\sin \theta}$)
$\int e^x \sec^2 (e^x) dx$
$\int \sqrt{1+x} dx$, using:
$u =1+x$;
$u=\sqrt{1+x}$.
$\int_1^e \ln (x^{1/x})dx$
$\int_0^1 x^3 \sqrt{1-x^2}dx$
$\int_0^1 x^5 \sqrt{1-x^2}dx$
-
$-\cos (x^2) + C$
$\ln|x^2+1| + C$ (Note: since $x^2+1$ is always positive, it is OK to drop the absolute value sign.)
$\ln | \ln |x| | + C$
$\ln (|\sin x|) + C$
$\tan(e^x) + C$
$\frac{2}{3} (1+x)^{3/2} + C$
$\frac{1}{2}$
$\frac{2}{15}$
$\frac{8}{105}$